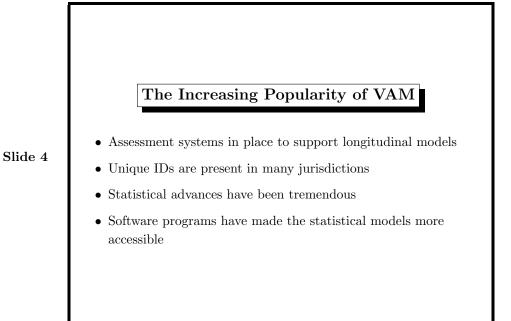
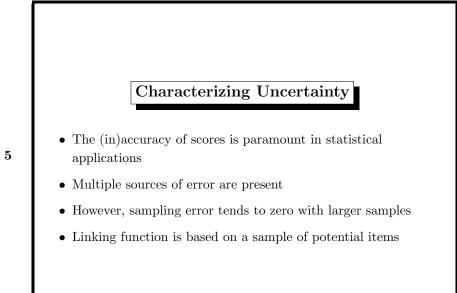
From Saint to Sinner and Back Again: The Confounding Effect of Linking Error on Gains Estimated from Value-Added Models

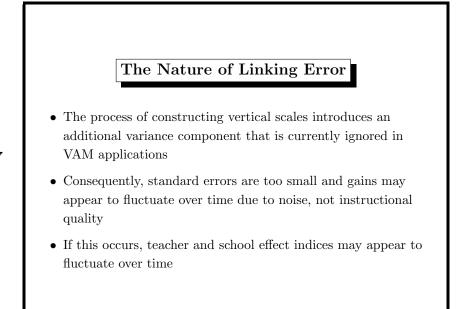
Slide 1

Harold C. Doran

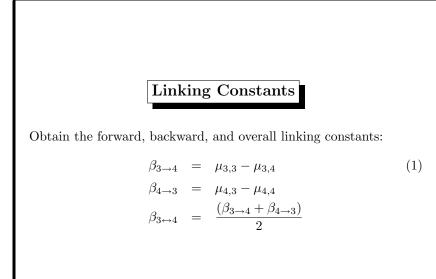

American Institutes for Research Computer and Statistical Sciences Center hdoran@air.org http://www.air.org/hdoran/personal.html


Purpose of My Talk

- To illustrate the bias introduced via linking error
- Provide empirical evidence of its confounding effect on TVAAS data



- No Child Left Behind illustrates national interest in test-based accountability
- However, AYP is a cross-sectional model
- Letter from 16 State Chief School Officers
- VAMs better align with the notion of student learning



Linking Error Literature Cohen, J., Johnson, E., & Angeles, J. (2000). Variance estimation when sampling dimensions via the jackknife with application to the national assessment of educational progress (Tech. Rep.). Washington, DC: American Institute for Research. Slide 6 Sheehan, K. M., & Mislevy, R. J. (1988, July). Some consequences of the uncertainty in IRT linking procedures (Tech. Rep.). Educational Testing Service. Haertel, E. H. (2004, May). The behavior of linking items in test equating (Tech. Rep.). CRESST/Stanford University. Hedges, L. V., & Vevea, J. L. (1997, December). A study of equating in NAEP (Tech. Rep.). http://www.air.org/publications/publications-set.htm.

Slide 8 **Linking Scales: A Small Example** • Items are embedded across test forms • $b_{3\rightarrow 3}$ with mean $\mu_{3,3}$ and variance $\sigma_{3,3}^2$ • $b_{3\rightarrow 4}$ with mean $\mu_{3,4}$ and variance $\sigma_{3,4}^2$ • $b_{4\rightarrow 3}$ with mean $\mu_{4,3}$ and variance $\sigma_{4,3}^2$ • $b_{4\rightarrow 4}$ with mean $\mu_{4,4}$ and variance $\sigma_{4,4}^2$

Calculate Error Variance

Because the linking constants were obtained using a sample of test items from a sample of students, they too are subject to error which can be estimated as:

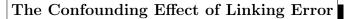
Slide 10

$$Var(\beta_{3\to4}) = \sigma_{\beta,3\to4}^2 = \sigma_{3,3}^2 + \sigma_{3,4}^2 - 2\sigma_{(3,3)(3,4)}$$
(2)
$$Var(\beta_{4\to3}) = \sigma_{\beta,4\to3}^2 = \sigma_{4,4}^2 + \sigma_{4,3}^2 - 2\sigma_{(4,4)(4,3)}$$

The variance of the overall linking constant is therefore:

$$Var(\beta_{3\leftrightarrow 4}) = \sigma_{3\leftrightarrow 4}^2 = \frac{\sigma_{\beta,3\rightarrow 4}^2 + \sigma_{\beta,4\rightarrow 3}^2}{4}$$
(3)

Obtain Proficiency Estimates


With test scales linked, the proficiency score of student i is:

$$\theta_{4i}^* = \theta_{4i} + \beta_{3 \leftrightarrow 4} \tag{4}$$

Slide 11

The variance of the score is:

$$Var(\theta_{4i}^*) = Var(\theta_{4i}) + Var(\beta_{4\leftrightarrow 3})$$
(5)

With the scales now linked, we can estimate mean scores as follows: Let

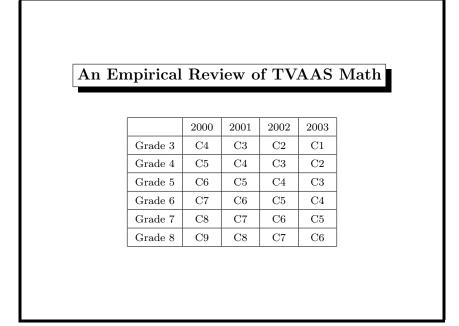
- $\bar{\theta}_{4j}$ = mean of Grade 4 students in school j with variance $\sigma_{4j}^2 + \sigma_{\beta,3\leftrightarrow 4}^2$
- $\bar{\theta}_{3j}$ = mean of this same cohort in the previous school year with variance σ^2_{3j}

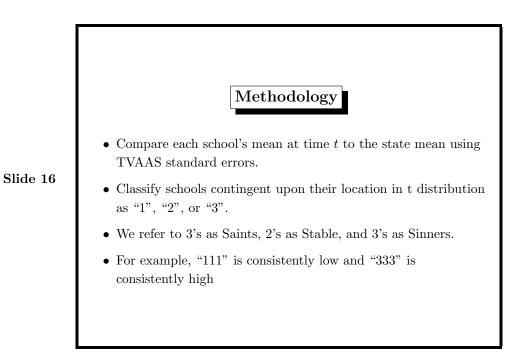
Calculate Difference Score

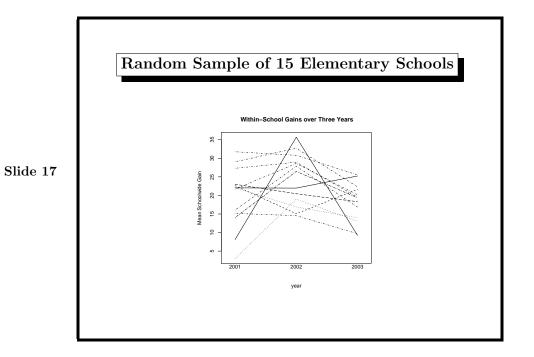
Using the Grade 4 and Grade 3 means on the vertical scale, it is common to difference the scores as follows to obtain the gain score:

$$D_{3\to4} = \theta_{4j} - \theta_{3j} \tag{6}$$

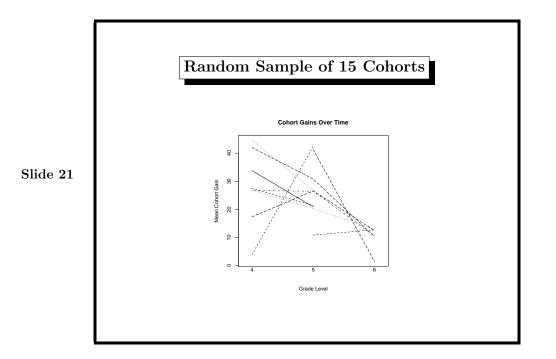
Slide 13


Which has the following variance:


$$Var(D_{3\to 4}) = (\sigma_{4j}^2 + \sigma_{3j}^2 - 2\sigma_{4j,3j}) + \sigma_{\beta,3\leftrightarrow 4}^2$$
(7)


For within grade comparison (e.g, 4 to 4) the linking bias subtracts out.

- As sample sizes increase, the sampling variance of the group means tends to zero.
- Slide 14
- However linking error is invariant to examine sample size, but is sensitive to number of embedded items
- If other items were embedded, we might obtain a slightly different linking function
- As a result, part of what appears to be gain is error that should be characterized as uncertainty.

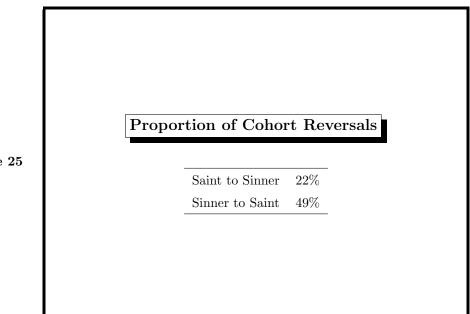

School Frequency Distribution Pattern Frequency $\overline{7}$ Slide 18

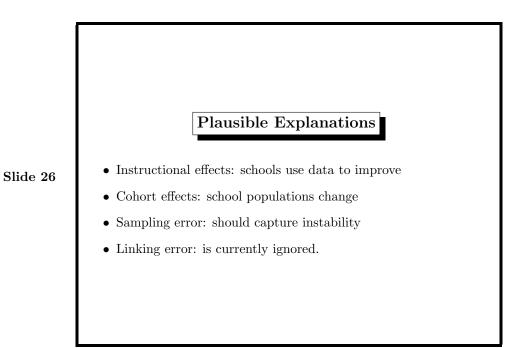
	schid	t1	t2	t3	pattern
682	1900040	-7.79	1.98	-2.22	131
2365	3500005	-2.61	6.30	-6.30	131
3793	5800021	6.13	-1.98	2.95	313
5050	7510015	4.16	-4.91	3.33	313
5206	7800045	6.15	-5.18	2.10	313
5362	7900107	-6.36	3.03	-3.25	131
5750	7910220	-7.35	6.46	-5.53	131
6020	7910435	-6.55	8.73	-12.87	131
6140	7910530	-2.07	3.61	-2.53	131
6272	7910620	-2.70	5.19	-9.06	131
6677	7910805	-4.84	6.52	-2.19	131

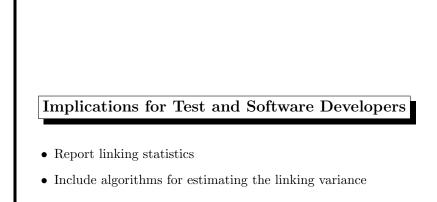
School Fluctuation Patterns

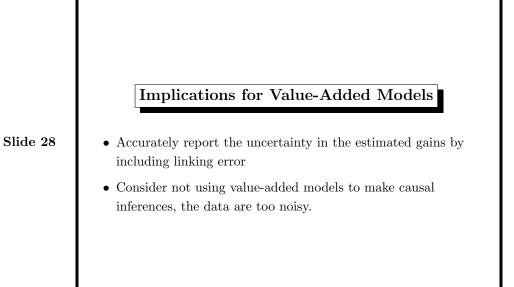
Slide 19

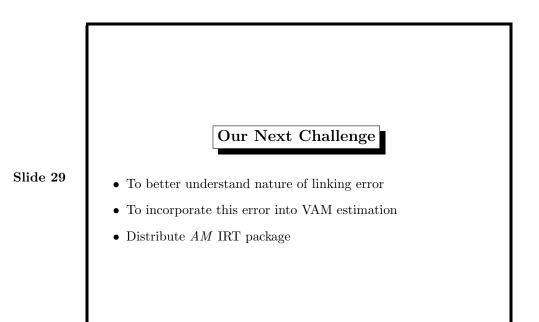
ortion of Schoo	
	i ne
Saint to Sinner	14%
Sinner to Saint	25%




Pattern	Frequency
113	1
131	15
132	11
13NA	40
213	3
231	34
311	6
312	20
313	5
31NA	18
321	21
331	6
NA31	15


Slid


	schid	t.2001	t.2002	t.2003	patterr
1666	1000013	-2.43	2.85	-5.18	131
4518	2300035	-4.67	3.75	-7.07	131
4710	2400060	-5.03	4.00	-2.20	131
5390	2900005	-2.76	6.27	-4.48	131
9170	5000050	4.31	-3.06	4.11	313
9410	5200050	7.65	-7.35	3.32	313
9786	5400060	4.29	-1.97	4.18	313
12402	7500077	-4.61	4.23	-3.77	131
12890	7800015	2.71	-3.29	2.10	313
13718	7910118	-3.80	6.52	-10.10	131
13822	7910133	-4.22	3.47	-3.06	131
14198	7910210	-7.60	4.21	-2.64	131


Slide 24

