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Background

❑ Much of the research effort on value-added (VA) modeling has
been devoted to reducing the biases in VA estimates, c.f.
Harris & Sass, 2006; Lockwood et al., 2007, McCaffrey et al.,
2009, Rothstein, 2009.

❑ Relatively less attention has been dedicated to the precision
and efficiency in VA estimates.

❑ Lack of precision in some VA estimates (in particular, teachers
with small classrooms) can greatly limit the utility of VA in
education evaluation.

❑ Other sensitivity issue of VA estimates for teachers with small
classrooms (Han et al., 2012).
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Raw VA Estimates Based on Small Classes are
Highly Variable
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Consequences of Imprecise VA Estimates

The more variable VA estimates (most often related to teachers
with small sample sizes) result in inappropriate evaluation
decisions, e.g. merit-based pay and tenure decision.

❑ When the decision is based on point estimates of VA, teachers
with imprecise VA estimates have an artificial advantage to be
recognized due to the variability.

■ E.g., a decision rule to award teachers with VA estimates
greater than .5 will recognize almost exclusively teachers
having fewer than 15 ∼20 students in the previous example.

❑ When the decision is based on a statistical test or a similar
measure, teachers with imprecise VA estimates have a
considerable disadvantage due to the impaired power.
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Improving the Precision

❑ Additional data is the best way to improve the precision of the
value-added estimate

❑ Pool multiple years of value-added

❑ Use other data such as teacher qualifications or other
measures of teaching
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What Are We Estimating?

❑ Teacher’s effectiveness for a given year and with a given group
of students

❑ Teacher’s stable level of effectiveness across several years

❑ The quantity of interest may depend on our purpose

❑ We focus on the teacher’s effectiveness for a give year
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How Do We Use Other Teacher Data?
❑ Small-area estimation (SAE)

■ Originally used in survey data analysis

■ Goal: estimate an area-level quantity of interest

❑ Direct estimator for an area:

■ Estimate based on samples from the area

■ Due to small sample sizes in an area, it is imprecise

❑ Synthetic estimator for an area:

■ Based on pooled data from areas with similar auxiliary
characteristics

■ It is precise but lacks area-level accuracy

❑ Composite estimator for an area:

■ A weighted average between direct and synthetic estimators

■ Weights chosen to minimize the mean squared prediction error
(MSE), i.e., an optimal balance between precision and bias
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Analogy between SAE and teacher VA estimate

❑ True teacher VA is the area-level quantity of interest ( teacher as
area)

❑ Direct estimate is the VA estimate based on test scores of a
teacher’s own students ( students as survey samples)

❑ Use VA of teachers sharing common characteristics for
synthetic estimator

■ Assumes teachers with similar observed characteristics will
have similar VA

■ We will use a model to determine how similar VA is for
teacher with the same characteristics ( model based
predictions as the mean for similar teachers)
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A three-stage modeling approach

❑ Stage 1: calculate VA estimates from an existing VAM. Treat the
raw VA estimates as direct estimates

❑ Stage 2: fit an area-level SAE model by regressing teacher VA
on teacher-level characteristics, from which we construct the
synthetic estimate

❑ Stage 3: determine the optimal weights and combine the direct
and synthetic estimates into a composite
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The Fay-Herriot model (F-H model)
❑ We need a model to determine the optimal weights

❑ Let θ local value and Y equal a direct estimate

θ = X ′β + a

Y = θ + e = X ′β + a+ e

■ X are area-level auxiliary characteristics

■ a ∼ N(0, τ2), e ∼ N(0, σ2

i
), a and e are independent

■ σ2 is the sampling variance of Y

❑ E.g., estimation variance of a teacher’s VA
❑ It is assumed to be known and can vary across units

❑ The F-H model is a predictive tool, not an explanatory model

❑ The F-H is a heteroskedastic mixed model, with one measure
on each subject and known (and varying) error variances
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SAE and the F-H model

❑ Under F-H model:

■ Direct estimator Y is VA estimate

■ True VA is θ = X ′β + a

■ Synthetic estimator is θ̄ = X ′β̂

■ Optimal composite estimator is

θ̂(τ) = λY + (1− λ)X ′β

λ =
τ2

τ2 + σ2
use λ̂ =

τ̂2

τ̂2 + σ2
and β̂

■ The composite estimator is the empirical best unbiased
predictor (EBLUP)

■ Estimates E(θ|Y,X)
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Estimation of the F-H Model

❑ Estimate τ2

■ Unbiased Quadratic Estimator (UQE)

❑ Method of moments
❑ Expected value of mean squared residual from regression

of VA on X equals τ2 plus a known term that depends on
the sampling error ( σ2) and the Xs

❑ τ̂2 equals mean squared residual minus the known term
❑ Resolves to the standard moment estimator, in a model

with just an intercept

■ REML

❑ Minimize restricted log-likelihood, downweights
observations with large estimation error more than UQE

❑ Given τ̂2, estimate β by the generalized least squares
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Estimation of the MSE F-H Model Estimator

❑ θ̂ is essentially a predictor for a “mixed” effect

❑ The efficiency of a predictor is measured by its mean squared
prediction error (MSE)

MSE(θ̂) = EY (θ̂ − θ)2

≈ λσ2 + g2

❑ λσ2 is the MSE of the standard shrinkage estimator

❑ g2 accounts for estimating β

❑ Can add terms to account for estimating τ2

❑ Use a “plug-in” estimator of MSE, mse(θ̂)

❑ The specific form of mse(θ̂) depends on the method fitting the
F-H model.
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The Plan

❑ Use SAE and F - H model to improve the precision VA

❑ Characteristics for finding similar teachers include:

■ Teacher qualifications (education, experience)

■ Teacher personal inputs (professional development,
absences)

■ Prior value-added
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Will It Work?
Reduction in MSE from Using Composite

Reliability of Direct Measure
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The Challenge

❑ Available teacher variables other than prior VA are very weak
predictors of VA

❑ Using many weak predictors might be inefficient because of
estimation error in β

❑ Should we use only prior VA? What about teachers without
prior VA?

❑ Should we use no predictors? Should we just use all the
available predictors?

❑ Can we use the data to select variables?
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Modified Plan

❑ Use SAE and F - H model to improve the precision VA

❑ Avoid overfitting

■ Variable selection

■ Model averaging
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Variable Selection

❑ Fit models with different sets of variables

❑ For each model calculate a fit statistic

■ Fit statistic approximates prediction error

■ Has “penalty” term for number of parameters

❑ AIC and BIC are common

❑ cAIC generalizes AIC to hierarchical model

❑ Fit F- H with different sets of characteristic variables

❑ Select the model with the lowest cAIC
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Model Averaging for the F-H Model

❑ Selecting a set of predictors can be inefficient because of
discreteness of the choice

❑ Model averaging can yield more accurate predictions since we
average across models rather than picking one

❑ Appealing for F-H since we use model to predict not make
inferences about Xs

❑ Fit F- H with different sets of characteristic variables and
generate composite estimator θ̂m for each model

❑ The final estimate is the weighted average of the composite
estimators θ̂ =

∑

m
wmθ̂m

❑ Choose the weights to minimize MSE of model average
estimator
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MSE for Model Averaged F-H Model

❑ MSE for each model is available if the model is correct but
model is not correct

❑ The MSE of the average depends on MSE for each model and
covariance among the estimators from each model

■ If correlation among estimators is 1, then MSE is maximized
and so MSE is bounded by

MSE(θ̂) ≤

{

∑

m

wm

√

MSE(θ̂m)

}

2

(1)
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Jackknife Estimator of MSE
❑ Use a jackknife or leave-one-out cross-validation to estima te the MSE

for model averaging for a given set of weights

❑ Delete observation 1 from the data

❑ Fit a candidate model with a given set of Xs using the dataset
without observation 1

❑ Calculate F-H estimator for observation 1, θ̂1m

❑ Calculate the prediction error for F-H estimator Y1 − θ̂1m

❑ Our goal is to estimate θ1 not Y1, so Y1 − θ̂1m overstates the error in
the model so we must adjust prediction error to account for the
sampling error in Y1

❑ Repeat for each of the remaining observations

❑ The average of squared adjusted prediction errors estimates MSE
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Jackknife Estimator of Model Average Weights
❑ Repeat jackknife MSE algorithm for all every candidate model

❑ Pick a set of weights {w∗m}

❑ Find the model average estimator for the given set of weights,
θ̂1,ave =

∑

m
w ∗m θ̂1m

❑ Calculate the prediction error for model average estimator Y1 − θ̂1,ave

❑ Repeat for each of the remaining observations

❑ Find weights to minimize the mean of squared adjusted predictio n
errors
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Case study
❑ Data source: from a large urban school district

❑ Sample: roughly 27,000 elementary and middle school
students; excluded special education and alternative schools
but included magnet schools. Grades 4 to 8.

❑ Student demographics: 50% African-American, 36% white,
11% Hispanic, 3% Asian or other ethnic groups.

❑ Subject: math

❑ Test scores (outcome of VAM): from spring of 2008 and prior
achievement scores from 2007, 2006 and 2005. (4th grade had
only one year of prior testing and 5th grade had only two years
of prior testing). Ranks of scale scores within grade
transformed by the inverse cdf of normal distribution.

❑ Teachers: 752 have direct VA estimates
October 27, 2012- 23



Direct VA estimates for Math Teachers

❑ We used the multivariate analysis of covariance (MANCOVA)
method (McCaffrey et al., 2009)

❑ A linear model for current year math scores with effects for
individual teachers and student prior achievement test scores
and demographic variables.

❑ The teacher effects are parameterized to sum to zero within
grade level (4 to 8)

❑ A pattern mixture approach for missing information in student
variables.
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Auxiliary Variables

❑ Years of experience

❑ Absences

❑ Total professional development hours and math professional
development hours

❑ Master’s degree or more

❑ Master’s degree GPA (equal to zero if no degree), n = 283 (38%)
missing

❑ Bachelor’s degree GPA n = 435 (58%) missing

❑ Quality of bachelor’s institution, 3 levels, n = 424 (56%) missing

❑ Bachelor’s degree major in education, n = 412 (55%) missing

❑ Prior year VA, n = 212 (28%) missing
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Missing Data Patterns

❑ 16 missing data patterns in the observed data

❑ Made bachelor’s variables have consistent set of observed or
missing values

■ All four variables have n = 445 teachers (59%) with
“missing” data

❑ Results in 8 missing data patterns

❑ Six teachers are missing only Master’s GPA and prior VA, mean
imputed Master’s GPA

❑ Results in 7 missing data patterns
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Candidate Models

❑ Seven blocks of variables: 1) experience 2) absences, 3) total
professional development hours and math professional
development hours, 4) Master’s Plus, 5) Master’s GPA, 6)
Bachelor’s GPA, quality of Bachelor’s institution, Bachelor’s
degree major in education, 7) prior value-added

❑ Considered the 128 models including or excluding each block
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Missing Data and Model Selection or Averaging

Approach 1

❑ Stratify the sample by missing data pattern

❑ Within each stratum use available candidate models

❑ Pick the model with lowest cAIC

❑ Estimate weights for model averaging using jackknife
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Missing Data and Model Selection or Averaging

Approach 2

❑ For each potential model find all teachers with the necessary
data to fit the model

❑ Fit the model and estimate prediction error using the jackknife
procedure

❑ Estimate weights for model averaging using jackknife using
the entire group

❑ For each pattern of observed data, identify all teachers with the
observed pattern

❑ Assign these weights to all teachers with the observed data
pattern
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Limited Gains from the Auxiliary Data

Strata Direct Intercept cAIC MA (1) MA (2)

1 39 13 13 17 17

2 16 13 12 12 12

3 11 7 6 8 8

4 38 22 22 18 18

5 47 22 22 21 21

6 17 13 12 11 12

7 11 8 7 8 8

All 23 14 13 13 14
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Reductions in MSE from Model Averaging

❑ Smallest average MSE comes from model averaging within
strata defined by pattern of observed data (Approach 1)

❑ But method does not lead to smaller MSE in each stratum

■ Error in direct estimates differs across strata

■ Standard errors of direct estimates may be biased low
because they do not account for classroom to classroom
variance
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JK Estimates of MSE

Strata Direct Intercept cAIC JK Min MA (1) MA (2) All

1 39 21 21 21 21 21 22

2 16 9 9 9 9 9 9

3 11 6 6 5 6 6 7

4 38 24 24 24 24 24 28

5 47 25 25 25 25 25 28

6 17 11 11 10 11 10 11

7 11 6 6 6 5 5 6

All 23 13 13 13 13 13 14
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MSE Relative to Intercept

Strata cAIC JK Min MA (1) MA (2) All

1 102 99 99 100 105

2 103 99 99 99 103

3 107 98 100 100 124

4 100 100 100 100 118

5 100 100 100 100 109

6 96 95 95 95 96

7 104 99 94 94 106

All 101 99 98 98 108
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MSE Relative to Intercept, Low Reliability VA

Strata cAIC JK Min MA (1) MA (2) All

1 103 99 99 100 105

2 86 85 85 89 85

3 110 96 102 102 134

4 100 100 100 100 122

5 100 100 100 100 109

6 92 91 91 91 91

7 106 95 88 88 109

All 97 95 95 95 107
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Estimating Stable Value-Added

❑ We estimated the teachers VA in 2008

❑ Stable VA may also be of interest

❑ Reliability of estimates of stable VA is lower because of annual
variation

❑ Could follow same approach to estimate stable component, will
obtain greater reductions in MSE
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Conclusions

❑ Small area estimation approaches provide means for using
auxiliary to reduce MSE of VA

❑ Gains for current year VA are likely to be small given available
auxiliary data

❑ Gains for stable VA will be greater

❑ Using a large group of weak predictors was inefficient because
of estimation error

❑ Variable selection and model averaging both can be used to
choose model

■ Jackknife model averaging was less sensitive to model
assumptions than using cAIC for variable selection
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