On Integrating Psychometrics and Learning Analytics in Complex Assessments

Robert J. Mislevy Educational Testing Service

The Sixteenth Annual Maryland Conference: Data Analytics and Psychometrics: Informing Assessment Practices.

Maryland Assessment Research Center, University of Maryland, College Park, MD, November 3-4, 2016

Read part	The dia			The	
(Female profe	switch	Persons	Items	The	
recognized that	onicon	01	23221132211122223333232111121111		
human instruct		02	323232333333333333333333323322223332		
definition of a		03	212111323111111233322112222111211		lice,
broad one. The		04	2221112112112123232111111111121211		ame
task but <u>no</u>		05	22211233222322233332111211122111		
be <u>purposefull</u> an object that'		06	2321222221111113333222221111221112		The top
sticks lying are		07	232111233222232333322222222222222322		e
to be sharpene		08	32321121122211132332111112111111		
1		09	3222232331221121111112111211221		
j		10	333332333322223333322223222222222		
		11	112222111122122333311111112221211		
		12	111111121111211223211121111211111		
e		13	333333212223322111121211222332321		
a		14	332222333223222112232322222321222		aionari
t		15	211111223222123212233321221323321		ciency
e		16	231122233222221111121121111122221		
		17	3332122333333333333222233333122222		
		18	212122112212211112211121121221211		
۹	a. Calo	19	3212123333232222122112133323323222	Х.	
	Sho	20	211222223212122323322221111221112		France
		21	32323233222212211111211111221322		
	b. Cale	22	2223222212211122322111111111333332	Χ.	" Why
	Sho	23	313222222112222333321122222211121		facts?
	0110	24	122111212111212232233111122111111		
	c. Exp	25	222222111211111111111111111111111111111	oint U.	r your
	C. LAP	26	222212232111222333322112122111211	June O.	ng the
	d Idaa	27	2211113221111112323111111111211112		-8
	d. Ider	28	333333223122111222332223333221232	t	
	war	29	231212211222211333212111121222212		
L	© C. 1	30	21231211112221212122212122221121		
	© D. (31	2211121112111112112111111111111111111		
	ΨD. 1	32	232212111212221111113221222121211		

The aim is "measuring a construct," framed in trait or behavioral psychology.

Usually a single measure is desired.

Each task (item) is a self-contained situation that evokes a response that provides evidence about the construct.

Each response is evaluated to provide an item score.

A test score accumulates evidence over items, often summing item scores, sometimes through a latentvariable model such as item response theory (IRT).

A snippet of SimCityEDU: Pollution Challenge!

A snippet of data from SimCityEDU

GL_Scenari 00:04	GL_Scenario_Accepted	dusa A3 - Large City.txt","scenarioTime":"00:00"} {"name":"Medusa A3 - Large City.txt","scenarioTime":"00:04"}
00:11	GL_Set_Speed	{"speed":"pause","scenarioTime":"00:11"}
06:23	GL_Set_Speed	{"speed":"resume","scenarioTime":"06:23"}
06:27	GL_Action_Building	{"action":"selected","name":"Coal Plant","scenarioTime":"06:27"}
06:28	GL_Action_Building	{"action":"viewed","name":"Coal Plant","scenarioTime":"06:28"}
06:31	GL_Action_Building	{"action":"deselected","name":"Coal Plant","scenarioTime":"06:31"}
06:33	GL_Action_Building	{"action":"view-hidden","name":"Moth_Shop","scenarioTime":"06:33"}
06:41	GL_Challenge_Heartbeat	{"jobs":"5924","name":"Medusa A3 - Large City.txt","pollution":"67283140","simoleons":"35655","scenarioTime":"06:41"}
06:46	GL_Mayor_Rating	{"Resource":"-1965801614","Value":"74","scenarioTime":"06:46"}
06:46	GL_Jobs	{"Resource":"606764013","Value":"5728","scenarioTime":"06:46"}
06:46	GL_Power_Consumed	{"Resource":"522916859","Value":"30209","scenarioTime":"06:46"}
06:46	GL_Happiness	{"Resource":"-863362202","Value":"1367","scenarioTime":"06:46"}
06:46	GL_Expenses	{"Resource":"-308716970","Value":"14915","scenarioTime":"06:46"}
06:46	GL_Power_Produced	{"Resource":"416922972","Value":"33600","scenarioTime":"06:46"}
06:46	GL_Workers	{"scenarioTime":"06:46"}
06:46	GL_Sims {"Resource"	:"681686445","Value":"4688","scenarioTime":"06:46"}
06:46	GL_Simoleons	{"Resource":"932594546","Value":"35655","scenarioTime":"06:46"}
06:46	GL_Income	{"Resource":"276811212","Value":"15570","scenarioTime":"06:46"}
06:46	GL_Solar_Power_Produce	ed {"Resource":"-1067234240","Value":"0","scenarioTime":"06:46"}
06:46	GL_Power_Wasted	{"Resource":"-665414129","Value":"0","scenarioTime":"06:46"}
06:46	GL_Wind_Power_Produce	
06:46	GL_Coal_Power_Produce	
06:47	GL_Action_ToolCategory	{"action":"opened","tool":"power","scenarioTime":"06:47"}
06:46	GL_Air_Pollution	{"Resource":"295846734","Value":"43135844","scenarioTime":"06:46"}
07:00	GL_Unit_Plop	{"UGuid":"0x9122c84d","name":"","Pos":"-237.33,233.38,146.93","scenarioTime":"07:00"}
07:01	GL_Dezone	{"type":"commercial","scenarioTime":"07:01"}
07:02	GL_Action_Building	{"action":"selected","name":"Solar Power Plant","scenarioTime":"07:02"}
07:02	GL_Action_Building	{"action":"viewed","name":"Solar Power Plant","scenarioTime":"07:02"}
07:03	GL_Action_Building	{"action":"deselected","name":"Solar Power Plant","scenarioTime":"07:03"}
07:03	GL_Action_ToolCategory	
07:04	GL_Action_Building	{"action":"view-hidden","name":"Solar Power Plant","scenarioTime":"07:04"}
07:08	GL_Unit_Plop	{"UGuid":"0xa230f2dc","name":"","Pos":"-147.38, 327.56, 146.93","scenarioTime":"07:08"}
07:15	GL_Challenge_Heartbeat	{"jobs":"6062","name":"Medusa A3 - Large City.txt","pollution":"86402071","simoleons":"9310","scenarioTime":"07:15"}

Insights in the Development of Psychometrics / Educational Measurement

- Probability-based reasoning, for managing evidence.
- Building models that suited an inferential problem cast in some psychological theory, with pertinent data.
- Seeing reliability, validity, comparability, generalizability, and fairness not just as measurement issues, but "social values that have meaning and force outside of measurement wherever evaluative judgments and decisions are made."

(Messick, 1994)

Psychology

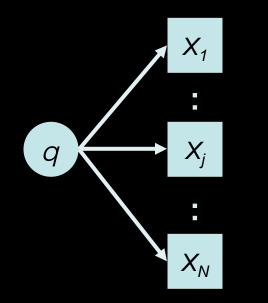
- Ed measurement paradigm: observation & control (150 years) is a layer over the Examination paradigm (2000 years!)
- Not much focus on cognitive or learning processes.

Data (key role for data mining and learning analytics)

- Human ratings of performances hide complexity, & don't scale.
- "Objective scoring" does scale and can be automated, but at cost of constraining observational situations and performances.

Models

- Galton, Cattell, Spearman, Thurstone, etc. were tackling problems jointly in psychology, observation methods, modeling, and statistics.
- Early learning analytics / data mining: Regression, correlation, multidimensional scaling, cluster analysis, factor analysis, path diagrams.


Probability-Based Reasoning

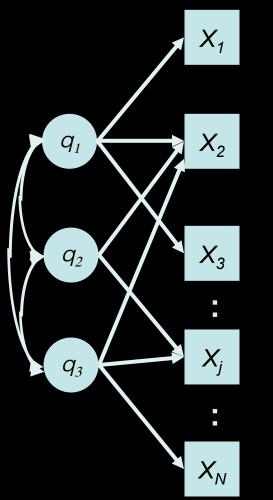
Probability isn't really about numbers; it's about the structure of reasoning.

Glenn Shafer (quoted in Pearl, 1988)

Probability-Based Reasoning

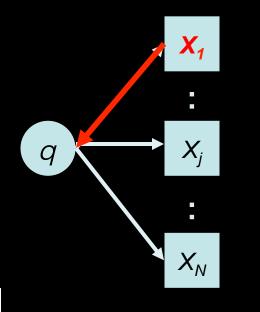
Classical Test Theory

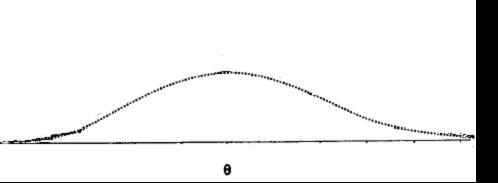
Conditional independence **posited** among *X*s given *q*.


Item response theory (IRT) has same structure at the level of items rather than tests.

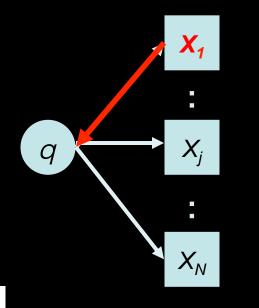
Probability-Based Reasoning

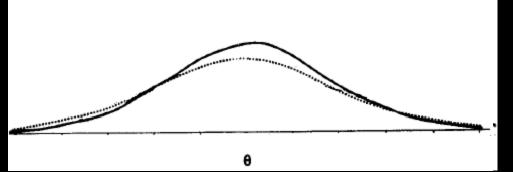
Factor analysis


Both discovery and guided exploration of underlying, psychologically-relevant, structure to "explain" patterns in data.

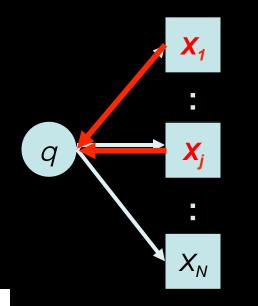

Same basic idea as current exploratory use of Bayes nets, multidimensional scaling, Gaussian mixture cluster analysis.

Probability-Based Reasoning

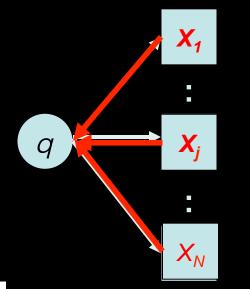

Bayesian inference

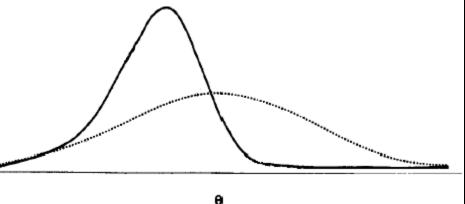


Probability-Based Reasoning


Bayesian inference

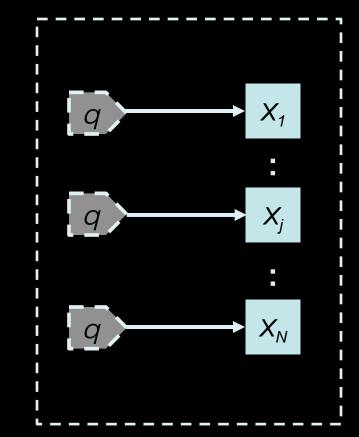
Probability-Based Reasoning


Bayesian inference



Probability-Based Reasoning

Bayesian inference



Probability-Based Reasoning

Q

Modularity

Probability-Based Reasoning

- Metric for quantifying evidence.
- Common framework for synthesizing different observations for different people.
- Tools to investigate how well do the patterns the model can express accord with the patterns that are in the data.

This conceptual framework, and these practical advantages, can extend to inference to assessments richer than SEMP in several ways.

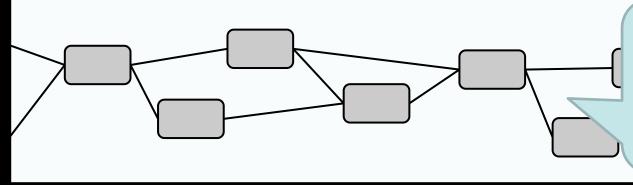
Social Values

Validity, reliability, comparability, [generalizability,] and fairness are not just measurement issues, but <u>social values</u> that have meaning and force outside of measurement wherever evaluative judgments and decisions are made.

Messick, 1994

<u>Situative / Sociocognitive Psychology</u>

Most approaches to curriculum, instruction, and assessment are based on theories and models that have not kept pace with modern knowledge of how people learn.

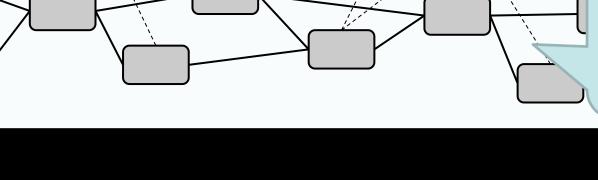

They are based on implicit and limited conceptions of learning that tend to be fragmented, outdated, and poorly delineated for subject-matter domains.

Jim Pellegrino (2016)

Situative / Sociocognitive Psychology

Confluence of ideas & research across domains –

 e.g., learning sciences; domain-based learning; sociolinguistics; "new literacy"; anthropology; cognitive, situated, social, neuro psychology.


Human-level activity, persons acting within situations--the actions, events, and activities we experience as individuals.

SOCIO-COGNITIVE

Extrapersonal, or betweenpersons, patterns: Regularities in interactions of people in communities, affinity spaces.

Language; cultural models; schemas for classrooms; scientific models. (LCS patterns)

> Human-level activity, persons acting within situations--the actions, events, and activities we experience as individuals.

SOCIO-COGNITIVE

Extrapersonal, or betweenpersons, patterns: Regularities in interactions of people in communities, affinity spaces.

Language; cultural models; schemas for classrooms; scientific models. (LCS patterns)

SOCIO-COGNITIVE

Within-person processes give rise to individuals' actions. Must both relate to LCS patterns and adapt to suit unique situations.

Resources to assemble particular patterns to understand, create, & act in particular kinds of situations.

KLI, CI theory, ACT-R; Lave, Hutchins, Engeström; Language as a complex adaptive system. Data also live at this level.

We try to make sense of them in terms of what we learn & conjecture about the layers above and below.

Situative / Sociocognitive Psychology

Person acting in situation.

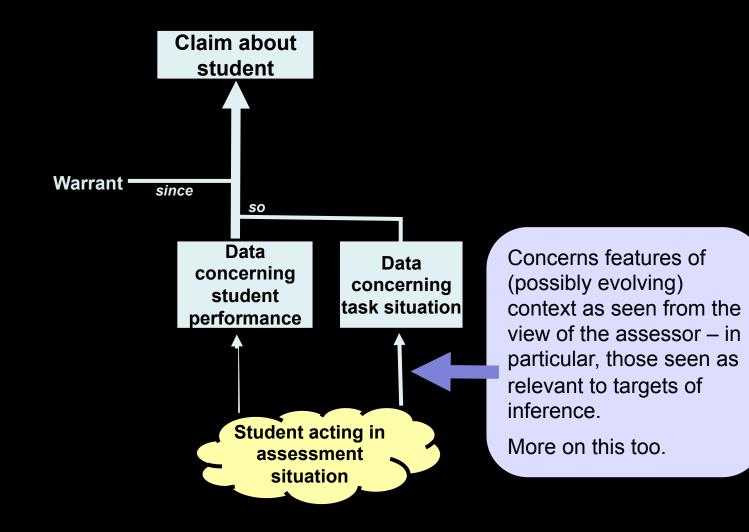
- What is important to notice?
- What does it mean?
- What will happen next?
- What kinds of things can I say / do next?
- How can I create / negotiate situations?

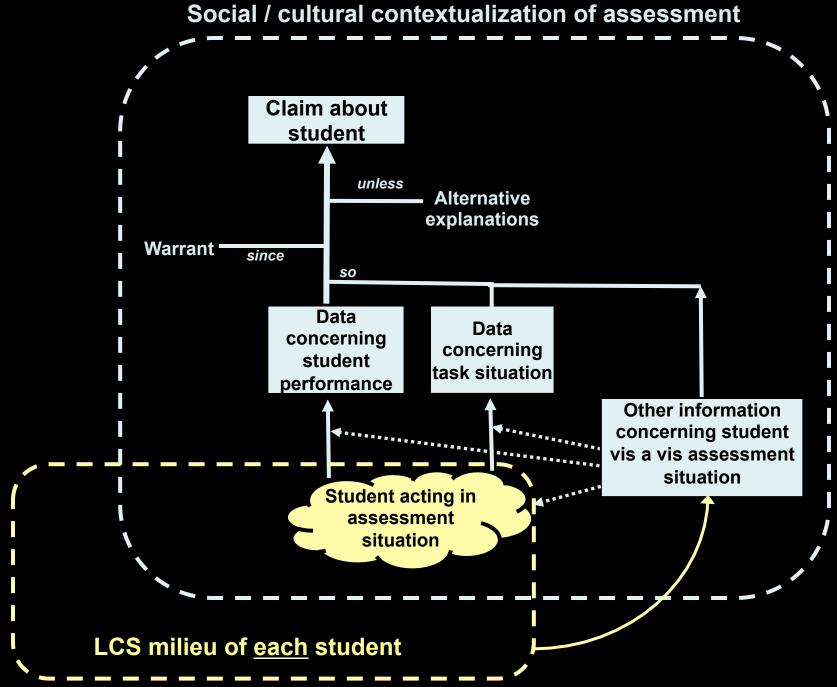
What does this imply for assessment?

• A great change in psychology and implied task environments... which changes what the variables and distributions mean.

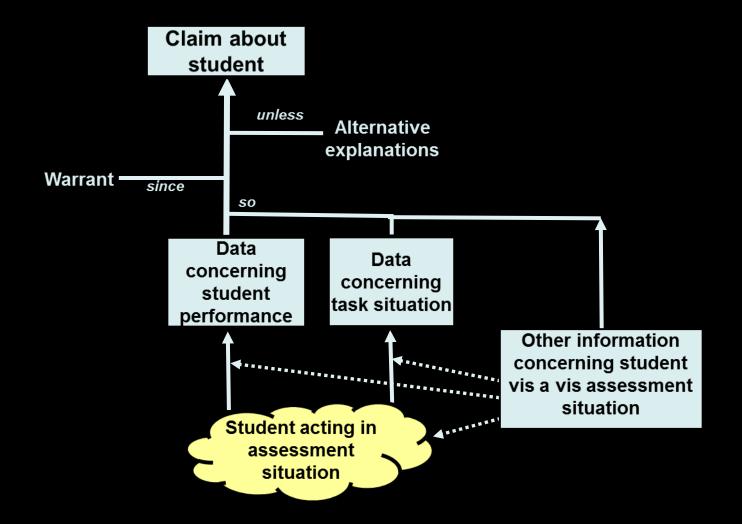
Implications for Psychometric Models

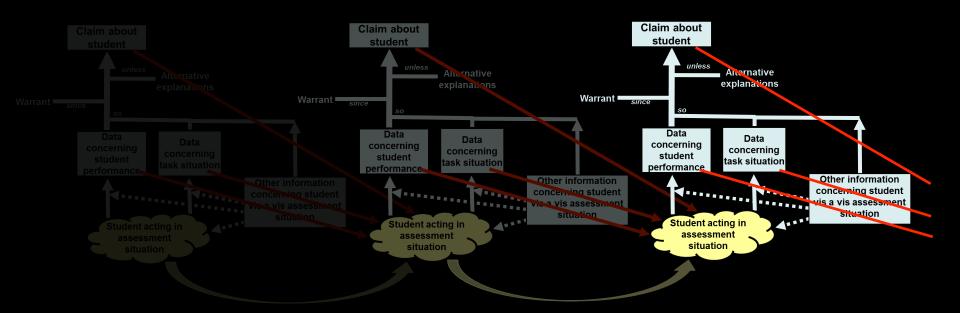
Q: How do we think of constructs (hence, latent variables)?

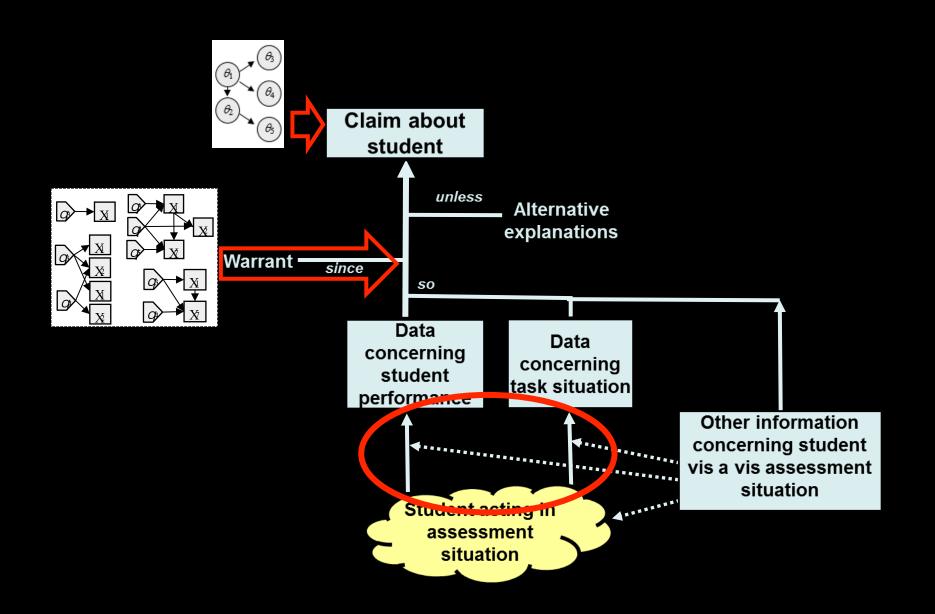

- A: Tendencies / capabilities / manners of perceiving, processing, and acting in certain kinds of situations constellations of certain *kinds* of **resources**.
- But thinking in terms of resources that are...
- Idiosyncratic, but similarities due to practices and LCS patterns that structure situations.
- Contingent, and local in time and associations among people.
- Initially strongly connected to contexts of learning.


What is the range of a model's "as if" usefulness? For what purposes?

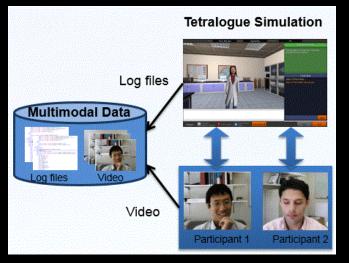
Implications for Environments & Models


- Continuous activity.
 - We must characterize evidence, not "score responses."
- Examinee actions change the situation.
- Changing proficiencies (esp. learning).
- Multiple proficiencies.
- Conditional dependence.
- Different proficiency / observable combinations.
- Multiple modalities.
- Interaction among examinees (e.g., collaboration).


The structure of assessment arguments



Copyright © 2016 by Educational Testing Service. All rights reserved.


Instantiating an assessment argument in objects and processes


New Forms of Assessment

SimCityEDU. GlassLab

Tetralogues. Khan & Suendermann-Oeft, ETS

Packet Tracer. Cisco Networking Academy Behrens & DiCerbo, 2013

Sao Pedro, Gobert, Toto, & Paquette, AERA 2015

New Forms of Assessment

Constructs

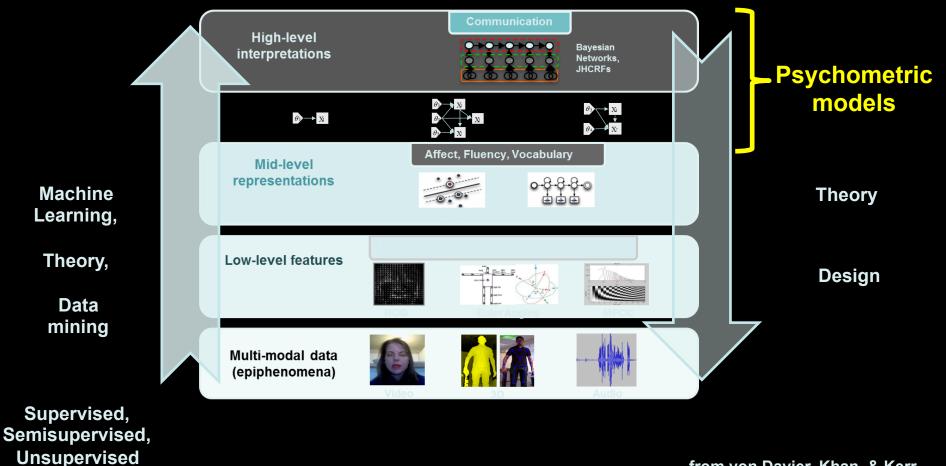
• Systems thinking, Interactional speaking, Troubleshooting, Cross-cultural communication, Inquiry, Collaboration.

Activity Models (née Task Models)

• Simulation spaces, Trialogue w avatars, Inquiry space. Situations & interactions designed to evoke evidence.

Work Product(s)

• Log files, videos, artifacts, speech/chats, artifacts/designs.

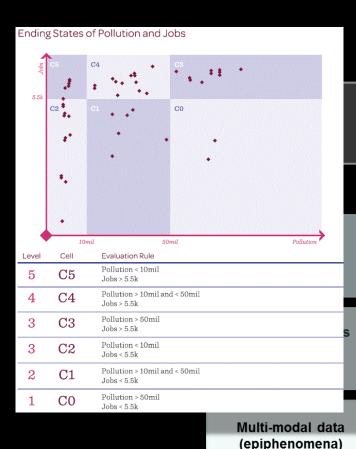

Psychometric Models

• SMVs tuned to theory, data, interaction, & purpose. OVs allow different particulars same construct-driven theory.

Evidence Identification...

"Computational Psychometrics"

Evidence for constructs from low-level data. *Hierarchies of chain of evidentiary reasoning (can be up & down, theory-aided.)*



from von Davier, Khan, & Kerr

Hierarchical Inference in Evidence Identification

Khan & Kerr (2014, 2015)

SimCityEDU: Pollution Challenge!

Construct was levels on a systems-thinking learning progression variable – reflects *kinds* of things people can do in *kinds* of situations. Model incorporated *q* change at the level of challenges.

	•	•
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	JHCRFs	- Psychometric
	$\theta_3 \longrightarrow \chi_1$	models
Summary funct	ions of coun	its of these actions

and system-state variables are input variables into a dynamic Bayes net – hidden Markov model with respect to level on learning progression.

Locations, times, durations and objects of "verb clauses"– verbs like "rezone," "bulldoze," "query map." \rightarrow Log file contents. (+ system actions)

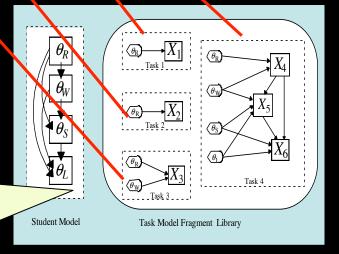
Locations, times, and durations of clicks, hovers, drag & drops, etc.

Hierarchical Inference in Evidence Identification

Khan & Kerr (2014, 2015)

SimCityEDU

Flow of Activity


State vector.

Tracks relevant features of situations and past actions.

Evidence-bearing opportunity detectors.

Agents monitor state vector for EBOs. [beyond "tasks"]

When a particular EBO occurs, evidence identification routine evaluates evidence, and "scoring engine" docks Bayes net fragment with proficiency model to update probability distribution for *q*s.

Psychometric objects and processes

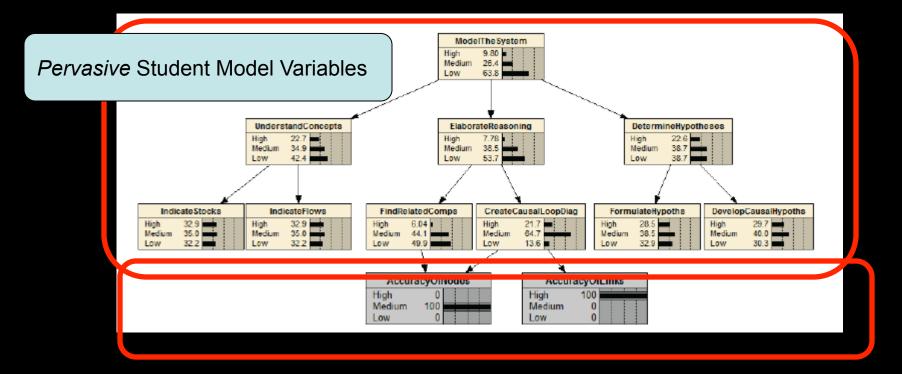
Social values, revisited

Validity, reliability, comparability, [generalizability], and fairness are not just measurement issues, but <u>social values</u> that have meaning and force outside of measurement wherever evaluative judgments and decisions are made.

Messick, 1994

<u> Conclusion – Key Ideas</u>

- Probability-based reasoning.
 - Manage evidence
 - Address reliability, validity, generalizability, comparability, fairness
- Situative / Sociocognitive psychological perspective.
- "Assessment as measurement"


<u> Conclusion – Key Ideas</u>

- Dialectic between design and discovery.
- "Computational psychometrics": Synergy of psychometrics, learning analytics, data mining.
- Validity, reliability, comparability, generalizability, fairness
 - Probability models help address them rigorously.

Thank you.

A Couple Quick Examples

Modular Bayes net for Evaluating a Casual-Loop Diagram

Ephemeral Observable variables from an evidence-bearing opportunity

Shute et al. (2010)

Conversation Mapping in Trialogue Assessment

Framework for using NLP with chat with avatars, to monitor and CREATE evidence-bearing opportunities.

Ron (Opening)		Student		Lisa		Ron		Student		Lisa (<u>Closing</u>)
What are we		Correct: Weather								That's right. We're
learning about		around the world								Iearning about the
today?	M									weather around the
	W									world.
	\mathbb{N}									1
	$\ $	Partially correct:		Yes, but it's not about		What are we learning		[Go to one of the		/
	111	Weather	\rightarrow	any weather. You need	\rightarrow	about the weather?	->	responses below]		/
	11			to tell Ron more.			1	1		/
	11						/			/
	-11						1		1	
	1	<u>Irrelevant</u>				What are we learning	/	Correct: Weather	1	
					_	about today?	,	around the world	/	
	- 1									
		No response after 3						Partially correct:	5	We're learning about
		seconds.						Weather		the weather around
									>	⇒the world.
								Incorrect or No		
								response	J	

LaMar & Bergner (2015)

Business-Process Modeling to Identify Computer-Network Troubleshooting Patterns of Experts and Novices

> Cisco Networking Academy's Packet Tracer tasks. Tiago Calico (2016)

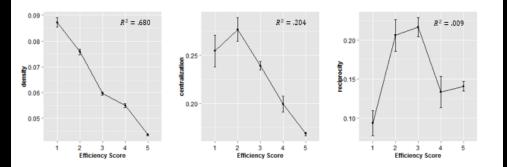
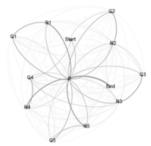
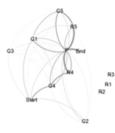



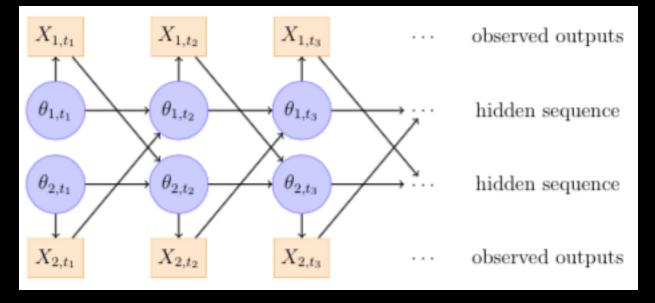
Figure 5. Plot of means of Density, Centralization, and Reciprocity for each efficiency score

category.



(b) Efficiency = 2, N=123

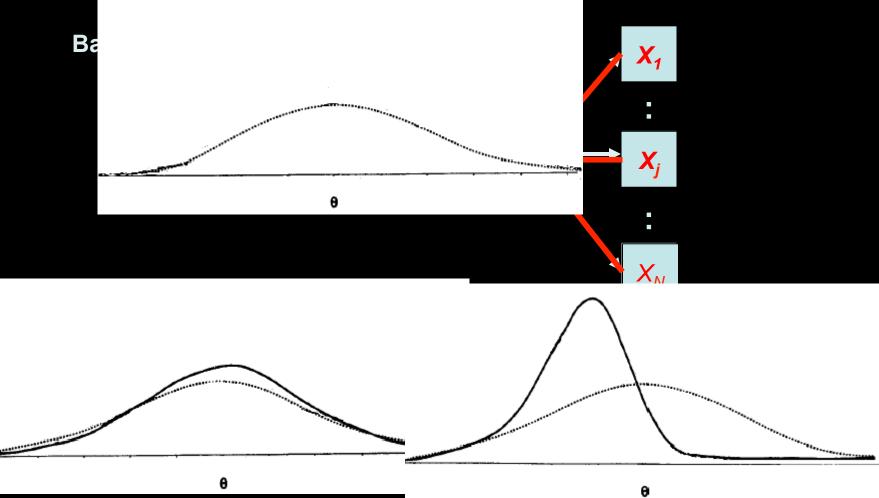
(a) Efficiency = 1, N=67


R3 G3 G2 R2 R1

(e) Efficiency = 5, N=741

Using network theory to improve task design and scoring

Zhu, Shu, & von Davier (2016)


A Hidden Markov Model for Collaboration

LaMar & Bergner (2015)

The Standard Ed Measurement Paradigm

Probability-Based Reasoning

