### Automated Test Assembly (ATA)

Case Studies in Classical Test Theory (CTT) and Item Response Theory (IRT)

November 3, 2017

David Chuah Luz Bay Thomas Proctor The College Board



# How to assemble a test form

Imagine if you have to pick 20 items for a test form

- Examples of Hard Constraints
  - Math
  - Reading
  - Multiple Choice/ Free Response
  - Difficulty
  - Multiple Forms
- Layers
- Soft Constraints

| Constraint    | Hard Low | Soft Low | Soft High | Hard High |
|---------------|----------|----------|-----------|-----------|
| Math          | 10       |          |           | 10        |
| MCQ           | 3        | 4        | 5         | 6         |
| Free Response |          | 5        | 6         |           |

## Automated Test Assembly (ATA)

- Computer program to select items for a test
  - Linear test form
    - Linear-on-the-fly (LOFT)
    - Fixed length form
  - Multi-stage test
  - Computer Adaptive Test (CAT) ~ Shadow Test
- Linear Programming/Optimization
  Mixed Integer Programming is LP restricted to integers
- College Board currently uses ATA for
  - SAT suite of assessments,
  - ACCUPLACER<sup>®</sup>
    - COMPANION Form
    - Standard Setting Ordered Item Booklet (OIB)

For ATA to work you need

- Item Pool with item metadata
  - Content
  - Item Statistics
- Test specifications/Constraints
  - Number of items on a test
  - Number of items by Content
  - Difficulty profile of the test items
- ATA Software

# ATA Types and Strategies

### **Types**

- Heuristic
- Linear Optimization

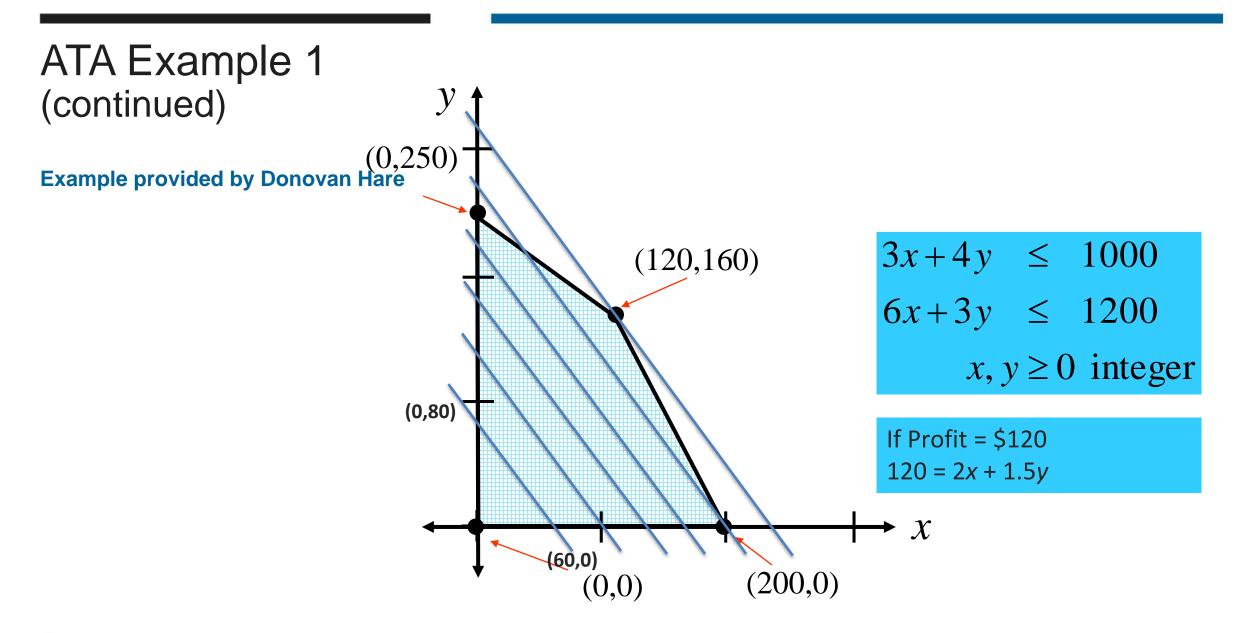
## **Build Strategy**

- Sequential Building
- Simultaneous Building

Linear Programming Solvers

- LP Solve free Mixed Integer Linear Programming (MILP)
- GLPK free GNU Linear Programming package
- Symphony Open-source MILP
- Gurobi commercial : linear/quadratic/mixed integer
- FICO Xpress commercial
- IBM ILOG CPLEX commercial

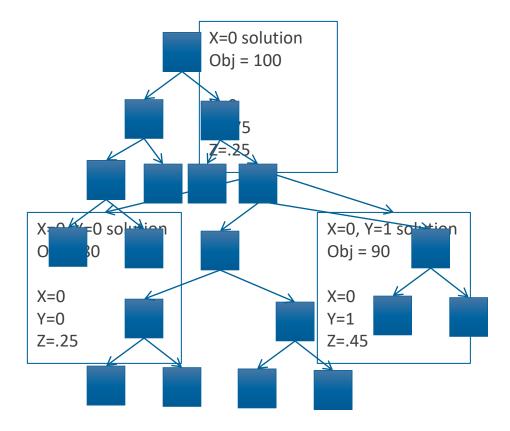
## ATA Example 1


#### **Example provided by Donovan Hare**

| Hibachi Model    | X      | Y      | Maximum per day |
|------------------|--------|--------|-----------------|
| Profit           | \$2.00 | \$1.50 |                 |
| Cast Iron Ingots | 3      | 4      | 1000            |
| Labor Units      | 6      | 3      | 1200            |

Profit = 2.00x + 1.50y $3x + 4y \le 1000$  $6x + 3y \le 1200$  $x \ge 0, y \ge 0$ 

#### Limitations


- Linear objective (No division or multiplication)
- Cannot be strict inequality (No '<' or '>')



## ATA Example 2

## Search

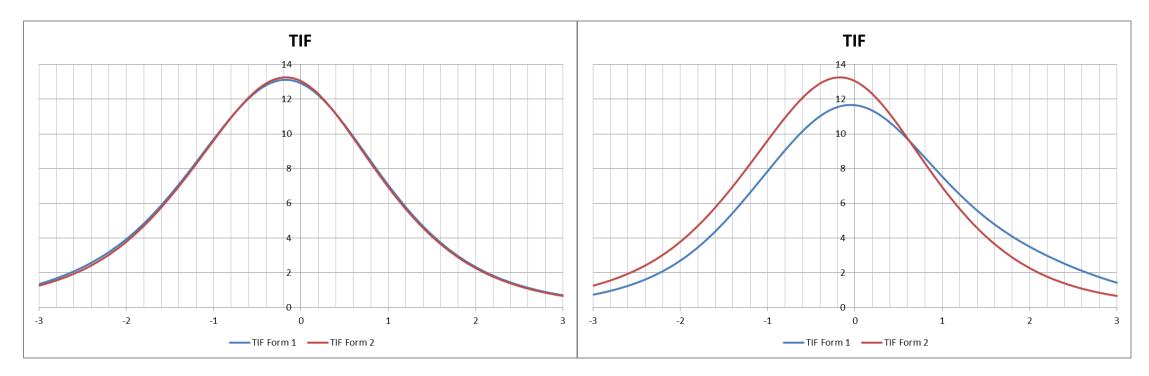
**Branch and Bound** 



Example of ATA Software

**IBM ILOG CPLEX** 

- Reading in Data
- Test constraint parameters & definitions
- Optional: Time or Gap limit
- Linear Optimization Function (maximize or minimize)
- Express constraints
- Output results


## ACCUPLACER

**Case Study in IRT** 

- Fully adaptive CAT
- Three-parameter logistic (3PL) model
- <u>Application 1</u>: COMPANION Forms Paper-based linear version (i.e., not adaptive)
- <u>Application 2</u>: OIB for standard setting Subset of item pool that matches test constraints

### <u>Application 1</u>: COMPANION Forms

- Simple
  - Optimization Programming Language OPL Code
  - Excel File Item Metadata



**CollegeBoard** 

<u>Application 1</u>: COMPANION Forms (continued)

Possible test constraints

- # of items
- # overlap items
- TIF higher than target
- Parallel TIF
- Maximize TIF overall (and/or at cut)
- Item Sets
- Content

<u>Application 2</u>: Ordered Item Booklet

- Simple
  - Optimization Programming Language OPL Code
  - Excel File Item Metadata
- RP67

<u>Application 2</u>: Ordered Item Booklet (continued)

## Constraints

- # of items
- Item can only appear once
- Alternate items by content type
- Space out items evenly across difficulty
- Content

(Manual adjustment)

# SAT Suite of Assessments

**Case Study in the CTT Context** 

- Paper-based linear tests (i.e., not adaptive)
- Classical Test Theory
  - Equated p-values
  - Reliability
- Tests
  - Reading
  - Writing
  - Math
  - Cross-Scores
  - Sub-Scores

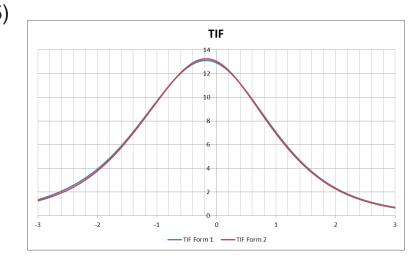
<u>Application 3</u>: SAT Suite of Assessments Forms

- Differences between ATA implementations in the CTT and IRT contexts
- College Board Proprietary ATA Engine
- Data Management
- Quality Control
- Archival/Documentation
- Troubleshooting
- Multiple parallel test forms
- Issues with assembly efficiency/speed

# Differences between CTT and IRT

**Test Reliability** 

#### CTT


- Point biserial correlation
- Constraint numerator and denominator for reliability coefficient (van der Linden 2005)

$$\alpha = \frac{n}{n-1} \left[ 1 - \frac{\sum_{i=1}^{n} \sigma^2}{\left(\sum_{i=1}^{n} \sigma_i \rho_i x\right)} \right]$$

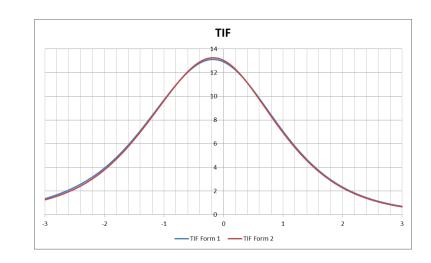
- Quadratic optimization
- Hybrid of quadratic and linear optimization

#### IRT

- Test Characteristic Curve
- Test Information Function



# Differences between CTT and IRT

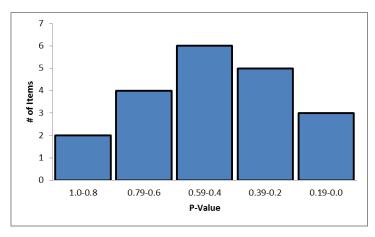

**Test Difficulty** 

#### CTT

Average Equated P-value/Equated
 Delta

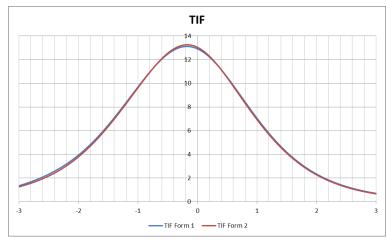
### IRT

- Test Characteristic Curve
- Test Information Function




## Differences between CTT and IRT

## Distributing Test Items by Difficulty


#### CTT

- Bin method for Equated Pvalue/Equated Delta
- Distance between P-value/Delta values
- Standard deviation of Pvalue/Delta using quadratic optimization



#### IRT

- Test Characteristic Curve
- Test Information Function



College Board Proprietary ATA Engine

- General Purpose ATA Program
  - Apply to new tests by changing specifications
  - SAS produces standardized files that are processed by the engine
- Discrete & Item Sets
- Complex Dependencies
- CTT & IRT

## Aspects of Implementing ATA

- Data Management
  - Excel file with test constraints
  - Constraints was designed to look similar to the files provided to us by test development
- Quality Control
  - Blueprint highlights
  - Independent files
- Archival/Documentation
  - Record of each build step
  - Memorandum of build

## Aspects of Implementing ATA (continued)

- Troubleshooting
  - Debug
  - Turn-to-Soft
- Multiple parallel test forms
  - Simultaneous solutions
  - Sequential mixed builds
- Assembly Efficiency
  - Warm starts
  - Improved algorithms
  - Hybrid algorithm for reliability: quadratic and linear

## **Other ATA Issues**

- Exposure control
- Item Inventory Prediction

# Thank You.

dchuah@collegeboard.org

